LEADERS for INNOVATION, INTEGRATION, DIRECTION

C. JOURQUIN

WHAT IS AN « ENGINEER »?

« A person versed in the design, construction, and use of engines or machines »

(WEBSTER'S DICTIONARY of ENGLISH LANGUAGE)

« Personne qui a reçu une formation scientifique et technique le rendant apte à diriger certains travaux, à participer aux applications de la science »

(ROBERT)

...So a kind of Janus

a two faced god

- The smiling one inspired by « **the sun** » whereby Janus would be enlightened for his contribution to the progress of Humanity.
- A severe one inspired by « **the moon** » whereby Janus would be influenced by his tiring work in the forge of Vulcan.

Sun – Sciences

- contribution to development of Humanity
 - Malthus
 - ❖ Malthus ❖ 8 planets 80 planets ? $\Delta = ?$

$$\Delta = ?$$

- Capability to integrate messages from the future
 - ❖ Changes in technology (△T)
 - \diamondsuit Changes in requirement and profile of products ($\triangle P$)
 - Changes in trend for costs (energy, raw materials) (ΔC)
 - ❖ Changes in market structures (∆MS)
 - ❖ Changes in regulations (△R)

So t	he	contrib	utior	n to	the	e fi	utu	re
				V	vill	be		

$$\mathbf{CF} = \int_{t}^{t+\Delta t} \frac{\Delta P}{\Delta T} + \frac{\Delta MS}{\Delta T} + \dots$$

- where the different terms receive a ponderation characteristic for the type of activity
- ❖ ∆T is significant for the expected timeframe for change
- This innovation capability is essential for the development of new products/services to secure the perenniality of corporations.

Moon – Technology

- *Rational and practical translation of theory into Reality
- Ability to translate
 - concepts into projects
 - projects into working solutions
- Trend is to go more and more to integration product/solution
- The technological capability is essential to build and run industrial facilities and... to secure the perenniality of corporations.

So... How to position this « Janus » god ?

How to breed this kind of engineer ?

How to position his required capabilities ?

< 0 > = zero point - the origin

How to decide to become an engineer?

- ❖Importance of elementary school (10 12 y)
- Importance of close contact with industry
- Teaching the teachers
- « Dreaming » the science
- « Meditation of content »

The Breadth

- Growing complexity of problems involving numerous partners
- Lowering barriers between branches of instruction
- Complementariness of competences/knowledge
- ❖Integration of « shared » or « distributed » intelligence
- ❖ Development of « lateral thinking »
- Development of critical mind
 - >skilled generalists
 - revisit the profile and the role of the teacher
 - ➤ Develop learning by project
 - > Multidisciplinary approach of complex problems

The Depth

- Enhancement of professional skills as competitive advantage
- « Vertical » transmission of knowledge through the different graduation systems
- Inclusion of professional education down to apprenticeship in cascading knowledge
- Recognition of competences

The Length

♦In Time

- ❖ Fast evolution in technologies
- Fast depreciation of acquired knowledge
 - ➤ Long life learning
 - ➤ Enhance the processes of long life learning

♦In Geography

- Some emerging countries (Corea, India, China) are taking leadership in some technologies (ICT, electronic...)
- Importance of meeting geographical challenge
 - > continuous benchmark with the « Best in class »
 - business and technology watch
 - ➤ Ensure international training
 - · university level
 - · corporation level

The Elevation

- ❖ How to consider situation from a « higher level » ?
 - Going from knowledge and experience to « Philosophy » (PhD)
 - → Introduction of some branches of instruction fostering thought and reflection
- How to better understand complex problems?
 - Problem solving integrates more and more various inputs from different disciplines
 - efficient action requires team work integrating specialists from different horizons
 - develop project management of complex problems including students from different faculties
 - → extend education to basis in Law, HR, finance

Need for strong leadership

- ❖ Identification of goals
- Formulation of strategy(ies) to reach a goal
- Focusing interdisciplinary tams on action(s) (teambuilding)
- communication skills
- → strategy management and communication management
- → leadership development

Openness to external world

- Understanding criticism from public opinion
- Image of industry(ies)/technologies
- → engagement in defense of scientific approach of issues felt as problem by public opinion
- → communicate on engagement

Conclusion

- To motivate the young generation to go to science, we need a strong industry
- To develop an industry we dramatically need young, skilled engineers.
- → Innovative personalities
- → Generalists able to integrate the future and solutions coming from other horizons of science and knowledge
- → With strong leadership
- → Able to direct projects with multidisciplinary teams